# Crystal Structure of Oxotremorine Sesquioxalate, 1-[4-(2-oxopyrrolidin-1-yl)but-2-ynyl]pyrrolidinium Sesquioxalate

By Peter J. Clarke,\*† Peter J. Pauling, and Trevor J. Petcher,‡ William Ramsay, Ralph Forster and Christopher Ingold Laboratories, University College London, Gower Street, London WC1E 6BT

The crystal structure of the title compound (I) has been determined from X-ray diffraction data. Crystals are triclinic, a = 8.183(4), b = 14.449(6), c = 8.879(4) Å,  $\alpha = 125.00(3)$ ,  $\beta = 89.32(3)$ ,  $\gamma = 98.30(3)^{\circ}$ , Z = 2, space group *P*T. The structure was solved by direct methods and refined by full-matrix least-squares to *R* 0.104 for 1895 three-dimensional diffractometer data. There is considerable disorder in the positions of the oxalic acid and oxalate anion. The pyrrolidine ring adopts the envelope conformation with the nitrogen 0.54 Å out of the plane of the carbon atoms, and the nitrogen substituent in the pseudo-equatorial position. The pyrrolidone ring is almost planar. The structure is linked by a series of hydrogen bonds between the oxotremorine cation and the oxalic acid and oxalate moieties.

TREMORINE, 1,1'-(but-2-ynylene)dipyrrolidine, is metabolised in the liver<sup>1</sup> to the pharmacologically active compound oxotremorine, 1-[4(pyrrolidin-1-yl)but-2ynyl]pyrrolidin-2-one, which may also be prepared synthetically and is used to simulate experimentally the

$$O = \begin{bmatrix} V \\ V \\ V \\ H_2C - C \equiv C - CH_2 \end{bmatrix} \begin{bmatrix} C_2 H O_4 \end{bmatrix}^{-} \begin{bmatrix} C_2 H_2 O_4 \end{bmatrix}_{1/2}$$

effects of Parkinsonism.<sup>2</sup> The protonated form of oxotremorine, 1-[4-(2-oxopyrrolidin-1-yl)but-2-ynyl]pyrrolidinium], is a potent muscarinic agonist.<sup>3</sup> We report here the crystal structure of (I), the sesquioxalate of oxotremorine, as part of a continuing study of structureactivity relationships among cholinergic drugs.

#### EXPERIMENTAL

Crystals of (I) are poorly developed plates exhibiting the forms  $\{100\}$ ,  $\{010\}$ , and  $\{001\}$ . The plane of the plate is (100), and the crystals give biaxial interference figures.

Crystal Data.— $[C_{12}H_{19}NO]^+[C_2HO_4]^-, \frac{1}{2}(C_2H_2O_4), M =$ 341.33. Triclinic, a = 8.183(4), b = 14.449(6), c = 8.879(4)Å,  $\alpha = 125.00(3)$ ,  $\beta = 89.32(3)$ ,  $\gamma = 98.30(3)^{\circ}$ , U = 847.8Å<sup>3</sup>,  $D_{\rm m}=1.34$  (by flotation), Z=2,  $D_{\rm c}=1.34$  g cm<sup>-3</sup>. Space group P1 or  $P\overline{1}$ , subsequently shown to be the latter by successful refinement. Mo- $K_{\alpha}$  radiation,  $\lambda = 0.7107$  Å;  $\mu$ (Mo- $K_{\alpha}$ ) = 2.54 cm<sup>-1</sup>.

Intensity Measurement.-Intensities with Bragg angles in the range  $\theta 2.5$ —27.5° were measured by use of an automatic computer controlled 4 four-circle diffractometer with zirconium-filtered Mo- $K_{\alpha}$  radiation and a  $\theta$ —2 $\theta$  scan. The reflections were integrated over a peakwidth of  $1.6^{\circ}$  with steps of  $0.04^{\circ}$  in 20 and a counting time of 5 s per step. The number of unique reflections measured was 3911, of which 1895 had  $I \ge 3\sigma(I)$  and were classed as observed. The data were

† Present address: Chemical Crystallography Laboratory, South Parks Road, Oxford OXI 3QR. *Present address:* Research Laboratories for Pharmaceutical

Chemistry, Sandoz Ltd., Basle, Switzerland.

<sup>1</sup> B. Karlen, Acta Pharm. Suecica, 1970, 7, 169.

<sup>a</sup> D. J. Jenden, 'Methods of Pharmacological Testing,' ed. A. Burger, Dekker, New York, 1967, p. 337. <sup>a</sup> I. Hanin, D. J. Jenden, and A. K. Cho, *Mol. Pharmacol.*, 1966, **2**, 352.

corrected for Lorentz-polarisation effects but not for absorption or extinction.

Structure Solution.—Several attempts were made to solve the structure by direct methods, but the results were highly dependent upon the method of calculating the normalised structure factors. The E values for oxotremorine were calculated by the K curve method,<sup>5</sup> which ensures that  $\langle |E|^2 \rangle \approx 1.0$  within discrete spherical shells of reciprocal space, and avoids the anomalous distribution of  $\langle |E|^2 \rangle$  with respect to  $\sin^2\theta$  frequently encountered with the older Wilson plot<sup>6</sup> method. However, a successful solution to the phase problem was only achieved when the reflections in each of the eight parity groups were normalised separately to ensure that  $\langle |E|^2 \rangle \approx 1.0$  for each parity group. This was a rather unexpected result since, when the data were normalised in one batch, the values of  $\langle |E|^2 \rangle$  for the eight parity groups fell within the range 0.90 - 1.10 which would usually be considered satisfactory. However, renormalisation led to changes of up to 45% in the individual E values used for symbolic addition, and, clearly, differences of this magnitude could have a dramatic effect on the progress of phase determination. The overall E statistics, which were the same for both methods of normalisation, were  $\langle |E| \rangle 0.782, \langle |E|^2 \rangle$ 0.997, and  $\langle |E^2 - 1| \rangle$  0.958, indicating that the structure was probably centrosymmetric.7

The structure was solved by direct methods with the LSAM symbolic addition programs,<sup>8</sup> and 499 reflections with *E* values  $\ge 1.5$ . The origin was defined by reflections 2,  $\overline{1}$ ,  $\overline{1}$ ,  $1, 6, \overline{2}$ , and  $2, \overline{1}, 0$ , and the symbols by  $2, 11, \overline{2}, 2, 4, \overline{2}, 1, 5, \overline{3}$ , and  $2,\overline{17},\overline{5}$ . The successful combination of signs for the symbols was (--++), and all non-hydrogen atom positions were revealed in the E map.

Structure Refinement.---The structure was refined by fullmatrix least-squares, by use of observed reflections only and unit weights. Atomic scattering factors for carbon, oxygen, and nitrogen were taken from ref. 9 and for hydrogen from ref. 10. The initial R factor for 540 reflections with  $\sin \theta$ /  $\lambda \leqslant 0.35$  was 0.37. Refinement of scale factor, atomic co-

<sup>4</sup> W. R. Busing, R. D. Ellison, H. A. Levy, S. P. King, and R. T. Roseberry, U.S. Atomic Energy Commission, Report ORNL 4143, 1968.

<sup>5</sup> J. Karle and H. Hauptman, Acta Cryst., 1953, 6, 473.
<sup>6</sup> A. J. C. Wilson, Nature, 1942, 150, 152.
<sup>7</sup> I. L. Karle, K. S. Dragonette, and S. A. Brenner, Acta Cryst., 1965, 19, 713.

<sup>8</sup> G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368.

<sup>9</sup> D. T. Cromer and J. T. Waber, *Acta Cryst.*, 1965, **18**, 104. <sup>10</sup> 'International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962.

ordinates, and eventually the overall isotropic temperature factor, whilst steadily increasing the sin  $\theta/\lambda$  limit reduced Rfactor to 0.285 by the time all the data had been included. Two cycles of refinement of co-ordinates and individual isotropic temperature factors gave R 0.225 which could not be improved by further refinement. A difference-Fourier synthesis showed that the oxygen atoms of the oxalate and oxalic acid moieties were distributed over two or three sites in the unit cell, but there was no comparable indication of disorder for their carbon atoms. Such a situation might arise through rotation of the carboxy-groups about a vector close to that of the connecting carbon-carbon bond.

The disorder in the oxygen atoms was accounted for by placing partial atoms at each of the sites indicated by the difference-Fourier synthesis, and refining the site occupation introduction of partial atoms meant that the oxotremorine cation had to be refined on separate cycles to the oxalic acid and oxalate anion. Further refinement reduced R to 0.178, and a second difference-Fourier synthesis revealed additional partial sites for atoms O(4) and O(5), and the positions of the hydrogen atoms for the protonated oxotremorine cation. Hydrogen atoms for the oxalic acid and oxalate moieties could not be located because of the disorder. The additional oxygen disorder was accounted for in the manner described, and the hydrogen atoms were included in the structure-factor calculation but their parameters were not refined. Subsequent refinement reduced R to 0.130 at which point there were no structurally significant peaks in the difference-Fourier map.

The temperature factors, with the exception of the

### TABLE 1

Fractional co-ordinates  $(\times 10^4)$  and anisotropic thermal parameters \*  $(\times 10^4)$  for non-disordered atoms, with estimated standard deviations in parentheses

| Atom  | x         | у         | z         | $U_{11}$  | $U_{22}$ | $U_{33}$ | $U_{12}$       | $U_{13}$ | $U_{23}$ |
|-------|-----------|-----------|-----------|-----------|----------|----------|----------------|----------|----------|
| C(1)  | 269(11)   | -865(7)   | 2093(12)  | 539(54)   | 394(45)  | 688(58)  | 110(39)        | 98(45)   | 267(44)  |
| C(2)  | -479(9)   | 185(7)    | 2990(11)  | 301(42)   | 435(44)  | 701(53)  | <b>44(34</b> ) | 22(37)   | 418(42)  |
| C(3)  | -1033(9)  | 1029(7)   | 3707(11)  | 381(44)   | 457(45)  | 529(47)  | -31(36)        | 0(36)    | 355(39)  |
| C(4)  | -1711(9)  | 2113(6)   | 4666(10)  | 459(47)   | 277(36)  | 476(44)  | -65(31)        | -74(36)  | 201(34)  |
| N(1)  | -827(7)   | -1855(5)  | 532(9)    | 406(37)   | 438(35)  | 657(43)  | 140(29)        | 161(32)  | 414(34)  |
| C(5)  | -1143(9)  | -2851(6)  | 322(12)   | 372(44)   | 440(43)  | 700(55)  | 143(34)        | 170(40)  | 412(43)  |
| O(1)  | -635(7)   | -3019(4)  | 1422(8)   | 708(41)   | 505(33)  | 783(41)  | 75(29)         | 33(32)   | 508(33)  |
| C(6)  | -2183(11) | -3718(8)  | -1462(13) | 591(59)   | 558(54)  | 701(61)  | 122(45)        | -62(49)  | 301(50)  |
| C(7)  | -2393(16) | -3059(10) | -2310(15) | 1230(104) | 920(82)  | 721(71)  | 119(74)        | -120(69) | 482(65)  |
| C(8)  | -1506(13) | -1857(8)  | -989(13)  | 974(77)   | 685(61)  | 647(60)  | 264(55)        | 154(55)  | 529(54)  |
| N(2)  | -3511(7)  | 1920(4)   | 4787(7)   | 426(35)   | 182(25)  | 289(29)  | 31(23)         | 19(25)   | 110(22)  |
| C(9)  | -3962(10) | 1539(6)   | 6023(10)  | 556(49)   | 421(41)  | 416(42)  | 140(36)        | 143(36)  | 310(36)  |
| C(10) | -5727(12) | 1815(8)   | 6487(13)  | 724(66)   | 637(57)  | 698(62)  | 209(48)        | 256(51)  | 449(52)  |
| C(11) | -5926(14) | 2707(9)   | 6153(15)  | 948(83)   | 778(70)  | 937(79)  | 439(62)        | 412(66)  | 562(65)  |
| C(12) | -4308(11) | 2964(6)   | 5529(11)  | 722(62)   | 397(42)  | 536(49)  | 282(41)        | 185(45)  | 277(39)  |
| C(13) | 5428(8)   | 403(5)    | -242(9)   | 397(41)   | 218(32)  | 291(36)  | -20(28)        | -14(31)  | 135(29)  |
| C(14) | 7842(13)  | 4633(7)   | 1237(16)  | 700(75)   | 386(48)  | 794(67)  | 162(48)        | 297(60)  | 319(50)  |
| C(15) | 7513(11)  | 3791(7)   | 1758(12)  | 626(57)   | 412(47)  | 487(50)  | -90(40)        | -9(45)   | 311(41)  |

\* In the form: exp  $[-2\pi^2(h^2a^{*2}U_{11}\ldots+2hka^*b^*U_{12}\ldots)].$ 

factors in addition to the co-ordinates and temperature factors. The site occupation and temperature factors were

## TABLE 2

Site-occupation factors  $(\times 10^3)$ , fractional co-ordinates  $(\times 10^4)$ , and isotropic thermal parameters  $(\times 10^4)$  for the disordered oxygen atoms

| Atom  | s               | x        | У        | Z         | $U_{iso}$ |
|-------|-----------------|----------|----------|-----------|-----------|
| O(2A) | 542(90)         | 5653(40) | 0(16)    | -1882(16) | 411(53)   |
| O(2B) | <b>591 (90)</b> | 5186(35) | 158(14)  | -1816(14) | 391(48)   |
| O(3A) | 541(65)         | 6410(29) | 1300(10) | 1070(14)  | 289(44)   |
| O(3B) | 592(65)         | 5873(32) | 1445(11) | 1204(15)  | 391(41)   |
| O(4A) | 252(37)         | 7906(37) | 4845(16) | 418(28)   | 556(90)   |
| O(4B) | 135(37)         | 6384(48) | 4659(22) | 426(35)   | 193(100)  |
| O(4C) | 629(35)         | 6963(20) | 4434(9)  | -134(14)  | 698(51)   |
| O(5A) | 776(36)         | 8978(10) | 5433(7)  | 2049(16)  | 581(42)   |
| O(5B) | 387(38)         | 9184(29) | 5542(20) | 3044(53)  | 1066(121) |
| O(6A) | 489(37)         | 8451(31) | 3898(14) | 2966(24)  | 723(70)   |
| O(6B) | 287(37)         | 7691(36) | 4125(15) | 3396(27)  | 339(88)   |
| O(6C) | 291(26)         | 6570(43) | 4208(21) | 3273(35)  | 875(126)  |
| O(7A) | 450(77)         | 7123(47) | 2752(15) | 354(33)   | 316(74)   |
| O(7B) | 434(63)         | 6514(50) | 2872(16) | 542(27)   | 537(65)   |
| O(7C) | 212(47)         | 7716(58) | 2866(22) | 860(54)   | 357(108   |

refined on alternate cycles at first because of high correlation, but simultaneous refinement was successful in the later stages when the parameter shifts had become very small. The increase in the number of refined parameters due to the hydrogen and disordered oxygen atoms, were converted to allow for anisotropic thermal motion, and refinement of coordinates, temperature factors, and, where appropriate, siteoccupation factors reduced R to the final value of 0.104. The maximum peak-height in the final difference-Fourier

#### TABLE 3

Fractional co-ordinates ( $\times 10^3$ ) for hydrogen atoms \*

|         |      |      | · ·                    | , ,     | 0    |     |            |
|---------|------|------|------------------------|---------|------|-----|------------|
| Atom    | x    | У    | Z                      | Atom    | x    | у   | z          |
| H(1,1)  | 50   | -105 | 311                    | H(N2)   | -400 | 125 | 380        |
| H(1,2)  | 144  | -73  | 158                    | H(9,1)  | -400 | 75  | <b>580</b> |
| H(4,1)  | -160 | 225  | 380                    | H(9, 2) | -320 | 200 | 700        |
| H(4,2)  | -120 | 275  | 580                    | H(10,1) | -640 | 125 | 580        |
| H(6, 1) | -320 | -375 | -100                   | H(10,2) | -600 | 225 | 820        |
| H(6,2)  | -140 | -440 | -220                   | H(11,1) | -640 | 225 | 500        |
| H(7,1)  | -373 | -300 | -200                   | H(11,2) | -600 | 365 | 760        |
| H(7,2)  | -160 | -350 | -340                   | H(12,1) | -440 | 325 | 460        |
| H(8,1)  | -217 | -127 | -10                    | H(12,2) | -360 | 350 | 660        |
| H(8,2)  | -40  | -175 | 140                    | ( , ,   |      |     |            |
| ,       |      |      | * U <sub>iso</sub> 0.0 | 051 Ų.  |      |     |            |

synthesis was  $0.54 \text{ eÅ}^{-3}$ . The *R* factor for the structure is therefore larger than that commonly achieved for organic structures, principally because of the difficulty in accounting completely for the disorder in the oxalic acid and oxalate moieties, but there is little doubt that the molecular packing is correct, and the values of bond lengths and angles in the

protonated oxotremorine cation indicate that the conformation derived in this analysis is completely reliable.

Final atomic parameters are given for the nondisordered

# TABLE 4

Interatomic distances (Å) and angles (°), with estimated standard deviations in parentheses

| (a) | Distances * |  |
|-----|-------------|--|
|-----|-------------|--|

| C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.48(1)                                                                                                                                                                                                                                                                                                                                                                             | C(13) - O(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(1) - N(1)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.47(1)                                                                                                                                                                                                                                                                                                                                                                             | C(13) - O(2B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.17(1)                                                                                                                                                                                                                                                                                                                                                                             | C(13) - O(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.29(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.48(1)                                                                                                                                                                                                                                                                                                                                                                             | C(13) - O(3B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(4) - N(2)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.47(1)                                                                                                                                                                                                                                                                                                                                                                             | C(14) - C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N(1) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.33(1)                                                                                                                                                                                                                                                                                                                                                                             | C(14) - O(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.94(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N(1) - C(8)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.46(1)                                                                                                                                                                                                                                                                                                                                                                             | C(14) - O(4B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(5) - O(1)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.22(1)                                                                                                                                                                                                                                                                                                                                                                             | C(14) - O(4C)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.28(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(5) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.50(1)                                                                                                                                                                                                                                                                                                                                                                             | C(14) - O(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.21(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(6) - C(7)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.54(1)                                                                                                                                                                                                                                                                                                                                                                             | C(14) - O(5B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.65(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(7) - C(8)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.50(1)                                                                                                                                                                                                                                                                                                                                                                             | C(15) - O(6A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N(2) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.51(1)                                                                                                                                                                                                                                                                                                                                                                             | C(15) - O(6B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N(2) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51(1)                                                                                                                                                                                                                                                                                                                                                                             | C(15) - O(6C)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.39(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(9) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.54(1)                                                                                                                                                                                                                                                                                                                                                                             | C(15) - O(7A)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.28(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(10) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51(1)                                                                                                                                                                                                                                                                                                                                                                             | C(15) - O(7B)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.14(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(11) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51(1)                                                                                                                                                                                                                                                                                                                                                                             | C(15)-O(7C)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.63(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C(13) - C(13I)                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.54(1)                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (b) Angles                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (*) ****8****                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C(2) - C(1) - N(1)                                                                                                                                                                                                                                                                                                                                                                                                                       | 111.5(7)                                                                                                                                                                                                                                                                                                                                                                            | C(10) - C(11) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $106 \cdot 8(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C(2)-C(1)-N(1)<br>C(1)-C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                         | 111.5(7)<br>178.4(10)                                                                                                                                                                                                                                                                                                                                                               | C(10)-C(11)-C(12)<br>N(2)-C(12)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                   | $106 \cdot 8(8)$<br>$104 \cdot 5(6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(2)-C(1)-N(1)<br>C(1)-C(2)-C(3)<br>C(2)-C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                       | $111.5(7) \\ 178.4(10) \\ 178.5(11)$                                                                                                                                                                                                                                                                                                                                                | C(10)-C(11)-C(12)<br>N(2)-C(12)-C(11)<br>C(13 <sup>I</sup> )-C(13)-O(2A)                                                                                                                                                                                                                                                                                                                                                                                                | $106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C(2)-C(1)-N(1)<br>C(1)-C(2)-C(3)<br>C(2)-C(3)-C(4)<br>C(3)-C(4)-N(2)                                                                                                                                                                                                                                                                                                                                                                     | $111.5(7) \\ 178.4(10) \\ 178.5(11) \\ 111.6(5)$                                                                                                                                                                                                                                                                                                                                    | C(10)-C(11)-C(12)<br>N(2)-C(12)-C(11)<br>$C(13^{I})-C(13)-O(2A)$<br>$C(13^{I})-C(13)-O(2B)$                                                                                                                                                                                                                                                                                                                                                                             | $106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} (c) \text{ marce} \\ C(2)-C(1)-N(1) \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ C(3)-C(4)-N(2) \\ C(1)-N(1)-C(5) \end{array}$                                                                                                                                                                                                                                                                                               | $111.5(7) \\ 178.4(10) \\ 178.5(11) \\ 111.6(5) \\ 121.6(7)$                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^1)-C(13)-O(2A)\\ C(13^1)-C(13)-O(2B)\\ C(13^1)-C(13)-O(3A) \end{array}$                                                                                                                                                                                                                                                                                                                                   | $106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} C(2) -C(1) -N(1) \\ C(1) -C(2) -C(3) \\ C(2) -C(3) -C(4) \\ C(3) -C(4) -N(2) \\ C(1) -N(1) -C(5) \\ C(1) -N(1) -C(8) \end{array}$                                                                                                                                                                                                                                                                                      | $111.5(7) \\ 178.4(10) \\ 178.5(11) \\ 111.6(5) \\ 121.6(7) \\ 123.0(6) \\$                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^{1})-C(13)-O(2A)\\ C(13^{1})-C(13)-O(2B)\\ C(13^{1})-C(13)-O(3A)\\ C(13^{1})-C(13)-O(3B) \end{array}$                                                                                                                                                                                                                                                                                                     | $106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 115 \cdot 6(12) \\ 11$                                                                                                                                                                            |
| $\begin{array}{c} C(2) - C(1) - N(1) \\ C(1) - C(2) - C(3) \\ C(2) - C(3) - C(4) \\ C(3) - C(4) - N(2) \\ C(1) - N(1) - C(5) \\ C(1) - N(1) - C(8) \\ C(5) - N(1) - C(8) \end{array}$                                                                                                                                                                                                                                                    | $111.5(7) \\ 178.4(10) \\ 178.5(11) \\ 111.6(5) \\ 121.6(7) \\ 123.0(6) \\ 115.2(7) \\$                                                                                                                                                                                                                                                                                             | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3A)\\ C(13^3)-C(13)-O(3B)\\ C(15)-C(14)-O(4A) \end{array}$                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 106{\cdot}8(8)\\ 104{\cdot}5(6)\\ 118{\cdot}8(12)\\ 120{\cdot}1(12)\\ 115{\cdot}4(13)\\ 112{\cdot}6(12)\\ 154{\cdot}8(20)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} (c) & \text{Implies} \\ C(2) - C(1) - N(1) \\ C(1) - C(2) - C(3) \\ C(2) - C(3) - C(4) \\ C(3) - C(4) - N(2) \\ C(3) - C(4) - N(2) \\ C(1) - N(1) - C(5) \\ C(1) - N(1) - C(8) \\ C(5) - N(1) - C(8) \\ N(1) - C(5) - O(1) \end{array}$                                                                                                                                                                                | $\begin{array}{c} 111 \cdot 5(7) \\ 178 \cdot 4(10) \\ 178 \cdot 5(11) \\ 111 \cdot 6(5) \\ 121 \cdot 6(7) \\ 123 \cdot 6(7) \\ 115 \cdot 2(7) \\ 115 \cdot 2(7) \\ 124 \cdot 3(8) \end{array}$                                                                                                                                                                                     | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3A)\\ C(13^3)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B) \end{array}$                                                                                                                                                                                                                                                                     | $106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 112 \cdot 6(12) \\ 113 \cdot 8(12) \\ 111 \cdot 3(15) \\ 11$                                                                                                                                                                            |
| $\begin{array}{c} C(2) -C(1) -N(1) \\ C(2) -C(2) -C(3) \\ C(2) -C(3) -C(4) \\ C(3) -C(4) -N(2) \\ C(3) -C(4) -N(2) \\ C(1) -N(1) -C(5) \\ C(1) -N(1) -C(8) \\ C(5) -N(1) -C(8) \\ N(1) -C(5) -C(1) \\ N(1) -C(5) -C(6) \end{array}$                                                                                                                                                                                                      | $\begin{array}{c} 111 \cdot 5(7) \\ 178 \cdot 4(10) \\ 178 \cdot 5(11) \\ 111 \cdot 6(5) \\ 121 \cdot 6(7) \\ 123 \cdot 0(6) \\ 115 \cdot 2(7) \\ 124 \cdot 3(8) \\ 109 \cdot 4(7) \end{array}$                                                                                                                                                                                     | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3A)\\ C(13^3)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4C)\\ \end{array}$                                                                                                                                                                                                                                               | $106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 118 \cdot 5(9) \\ 118 \cdot 5(9) \\ 104 \cdot 5(10) \\ 104 $                                                                                                                                                                            |
| $\begin{array}{c} C(2) -C(1) -N(1) \\ C(1) -C(2) -C(3) \\ C(2) -C(3) -C(4) \\ C(3) -C(4) -N(2) \\ C(1) -N(1) -C(5) \\ C(1) -N(1) -C(8) \\ C(5) -N(1) -C(8) \\ N(1) -C(5) -C(1) \\ N(1) -C(5) -C(6) \\ C(6) -C(5) -O(1) \end{array}$                                                                                                                                                                                                      | $111.5(7) \\178.4(10) \\178.5(11) \\111.6(5) \\121.6(7) \\123.0(6) \\115.2(7) \\124.3(8) \\109.4(7) \\126.4(7) \\126.4(7) \\$                                                                                                                                                                                                                                                       | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3B)\\ C(13^3)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(5A) \end{array}$                                                                                                                                                                                                         | $\begin{array}{c} 106{\cdot}8(8)\\ 104{\cdot}5(6)\\ 118{\cdot}8(12\\ 120{\cdot}1(12\\ 115{\cdot}4(13\\ 112{\cdot}6(12\\ 154{\cdot}8(20\\ 111{\cdot}3(15\\ 118{\cdot}5(9)\\ 119{\cdot}7(12\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} C(2)-C(1)-N(1)\\ C(2)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-N(2)\\ C(1)-N(1)-C(5)\\ C(1)-N(1)-C(8)\\ C(5)-N(1)-C(8)\\ N(1)-C(5)-O(1)\\ N(1)-C(5)-C(6)\\ C(6)-C(5)-O(1)\\ C(5)-C(6)-C(7) \end{array}$                                                                                                                                                                                                                  | $\begin{array}{c} 111.5(7) \\ 178.4(10) \\ 178.5(11) \\ 111.6(5) \\ 121.6(7) \\ 123.0(6) \\ 115.2(7) \\ 124.3(8) \\ 109.4(7) \\ 126.4(7) \\ 126.4(7) \\ 104.2(7) \end{array}$                                                                                                                                                                                                       | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^1)-C(13)-O(2A)\\ C(13^1)-C(13)-O(2B)\\ C(13^1)-C(13)-O(3A)\\ C(13^1)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(5A)\\ C(15)-C(14)-O(5B) \end{array}$                                                                                                                                                                                                         | $\begin{array}{c} 106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 118 \cdot 5(9) \\ 119 \cdot 7(12) \\ 93 \cdot 1(14) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} C(2)-C(1)-N(1)\\ C(2)-C(3)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-N(2)\\ C(1)-N(1)-C(5)\\ C(1)-N(1)-C(5)\\ C(1)-N(1)-C(8)\\ N(1)-C(5)-O(1)\\ N(1)-C(5)-O(1)\\ N(1)-C(5)-O(1)\\ N(1)-C(5)-O(1)\\ C(6)-C(7)-C(8)\\ \end{array}$                                                                                                                                                                                               | $\begin{array}{c} 111 \cdot 5(7) \\ 178 \cdot 4(10) \\ 178 \cdot 5(11) \\ 111 \cdot 6(5) \\ 121 \cdot 6(7) \\ 123 \cdot 0(6) \\ 115 \cdot 2(7) \\ 124 \cdot 3(8) \\ 109 \cdot 4(7) \\ 126 \cdot 4(7) \\ 104 \cdot 2(7) \\ 107 \cdot 4(8) \end{array}$                                                                                                                               | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3B)\\ C(13^3)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(5A)\\ C(15)-C(14)-O(5B)\\ C(14)-C(15)-O(6A)\\ \end{array}$                                                                                                                                                               | $\begin{array}{c} 106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 118 \cdot 5(9) \\ 119 \cdot 7(12) \\ 93 \cdot 1(14) \\ 120 \cdot 0(10) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} (c) & rungetiese \\ C(2)-C(1)-N(1) \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ C(3)-C(4)-N(2) \\ C(1)-N(1)-C(5) \\ C(1)-N(1)-C(8) \\ C(5)-N(1)-C(8) \\ N(1)-C(5)-C(6) \\ C(5)-C(6)-C(7) \\ C(6)-C(7)-C(8) \\ C(6)-C(7)-C(8) \\ C(7)-C(8)-N(1) \end{array}$                                                                                                                                                                  | $\begin{array}{c} 111 \cdot 5(7) \\ 178 \cdot 4(10) \\ 178 \cdot 5(11) \\ 111 \cdot 6(5) \\ 121 \cdot 6(7) \\ 123 \cdot 0(6) \\ 115 \cdot 2(7) \\ 124 \cdot 3(8) \\ 109 \cdot 4(7) \\ 126 \cdot 4(7) \\ 126 \cdot 4(7) \\ 104 \cdot 2(7) \\ 107 \cdot 4(8) \\ 103 \cdot 8(7) \end{array}$                                                                                           | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3A)\\ C(13^3)-C(13)-O(3A)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(5B)\\ C(14)-C(15)-C(6A)\\ C(14)-C(15)-O(6B)\\ \end{array}$                                                                                                                                                               | $\begin{array}{c} 106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 112 \cdot 6(12) \\ 112 \cdot 6(12) \\ 114 \cdot 6(12)$                                                                                                                                                                 |
| $\begin{array}{c} (c) & rungerod \\ C(2)-C(1)-N(1) \\ C(1)-C(2)-C(3) \\ C(2)-C(3)-C(4) \\ C(3)-C(4)-N(2) \\ C(1)-N(1)-C(5) \\ C(1)-N(1)-C(8) \\ C(5)-N(1)-C(8) \\ N(1)-C(5)-C(6) \\ C(5)-C(6)-C(7) \\ C(6)-C(5)-O(1) \\ C(5)-C(6)-C(7) \\ C(6)-C(7)-C(8) \\ C(7)-C(8)-N(1) \\ C(4)-N(2)-C(9) \end{array}$                                                                                                                                | $\begin{array}{c} 111\cdot 5(7)\\ 178\cdot 4(10)\\ 178\cdot 5(11)\\ 111\cdot 6(5)\\ 121\cdot 6(7)\\ 123\cdot 0(6)\\ 115\cdot 2(7)\\ 124\cdot 3(8)\\ 109\cdot 4(7)\\ 126\cdot 4(7)\\ 126\cdot 4(7)\\ 104\cdot 2(7)\\ 107\cdot 4(8)\\ 103\cdot 8(7)\\ 113\cdot 2(5) \end{array}$                                                                                                      | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3B)\\ C(15)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4C)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(5B)\\ C(14)-C(15)-O(6A)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6C)\\ \end{array}$                                                                                                                         | $\begin{array}{c} 106\cdot8(8)\\ 104\cdot5(6)\\ 118\cdot8(12)\\ 120\cdot1(12)\\ 115\cdot4(13)\\ 112\cdot6(12)\\ 154\cdot8(20)\\ 111\cdot3(15)\\ 118\cdot5(9)\\ 119\cdot7(12)\\ 93\cdot1(14)\\ 120\cdot0(10)\\ 121\cdot0(11)\\ 110\cdot9(13)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} C(2)-C(1)-N(1)\\ C(2)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-N(2)\\ C(1)-N(1)-C(5)\\ C(1)-N(1)-C(5)\\ C(1)-N(1)-C(8)\\ N(1)-C(5)-C(1)\\ N(1)-C(5)-C(1)\\ N(1)-C(5)-C(6)\\ C(6)-C(5)-C(6)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-C(7)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-N(1)\\ C(4)-N(2)-C(9)\\ C(4)-N(2)-C(12) \end{array}$                                                                                                           | $\begin{array}{c} 111 \cdot 5(7) \\ 178 \cdot 4(10) \\ 178 \cdot 5(11) \\ 111 \cdot 6(5) \\ 121 \cdot 6(7) \\ 123 \cdot 0(6) \\ 115 \cdot 2(7) \\ 124 \cdot 3(8) \\ 109 \cdot 4(7) \\ 126 \cdot 4(7) \\ 126 \cdot 4(7) \\ 104 \cdot 2(7) \\ 107 \cdot 4(8) \\ 103 \cdot 8(7) \\ 113 \cdot 2(5) \\ 114 \cdot 0(5) \end{array}$                                                       | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^1)-C(13)-O(2A)\\ C(13^1)-C(13)-O(2B)\\ C(13^1)-C(13)-O(3A)\\ C(13^1)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(5B)\\ C(15)-C(14)-O(5B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6C)\\ C(14)-C(15)-O(6C)\\ C(14)-C(15)-O(7A)\\ \end{array}$                                                                                                                       | $\begin{array}{c} 106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 118 \cdot 5(9) \\ 119 \cdot 7(12) \\ 93 \cdot 1(14) \\ 120 \cdot 0(10) \\ 121 \cdot 0(11) \\ 110 \cdot 9(13) \\ 112 \cdot 8(11) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} C(2)-C(1)-N(1)\\ C(2)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-N(2)\\ C(3)-C(4)-N(2)\\ C(1)-N(1)-C(5)\\ C(1)-N(1)-C(8)\\ C(5)-N(1)-C(8)\\ N(1)-C(5)-O(1)\\ N(1)-C(5)-O(1)\\ N(1)-C(5)-C(6)\\ C(6)-C(5)-O(1)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-N(1)\\ C(4)-N(2)-C(12)\\ C(9)-N(2)-C(12)\\ \end{array}$                                                                                                        | $\begin{array}{c} 111.5(7)\\ 178.4(10)\\ 178.5(11)\\ 111.6(5)\\ 121.6(7)\\ 123.0(6)\\ 115.2(7)\\ 124.3(8)\\ 109.4(7)\\ 126.4(7)\\ 126.4(7)\\ 104.2(7)\\ 107.4(8)\\ 103.8(7)\\ 113.2(5)\\ 114.0(5)\\ 105.1(5) \end{array}$                                                                                                                                                           | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^1)-C(13)-O(2A)\\ C(13^1)-C(13)-O(2B)\\ C(13^1)-C(13)-O(3B)\\ C(13^1)-C(13)-O(3B)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(5A)\\ C(15)-C(14)-O(5B)\\ C(14)-C(15)-O(6A)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6C)\\ C(14)-C(15)-O(7A)\\ C(14)-C(15)-O(7B)\\ \end{array}$                                                                                                   | $\begin{array}{c} 106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 118 \cdot 5(9) \\ 119 \cdot 7(12) \\ 93 \cdot 1(14) \\ 120 \cdot 0(10) \\ 121 \cdot 0(11) \\ 110 \cdot 9(13) \\ 112 \cdot 8(11) \\ 112 \cdot 1(10) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} (2) - C(1) - N(1) \\ C(2) - C(1) - N(1) \\ C(1) - C(2) - C(3) \\ C(2) - C(3) - C(4) \\ C(3) - C(4) - N(2) \\ C(1) - N(1) - C(5) \\ C(1) - N(1) - C(5) \\ C(1) - N(1) - C(8) \\ N(1) - C(5) - O(1) \\ N(1) - C(5) - O(1) \\ N(1) - C(5) - O(1) \\ C(6) - C(5) - C(6) \\ C(6) - C(7) - C(8) \\ C(6) - C(7) - C(8) \\ C(7) - C(8) - N(1) \\ C(4) - N(2) - C(1) \\ C(4) - N(2) - C(12) \\ N(2) - C(9) - C(10) \end{array}$ | $\begin{array}{c} 111 \cdot 5(7) \\ 178 \cdot 4(10) \\ 178 \cdot 5(11) \\ 111 \cdot 6(5) \\ 121 \cdot 6(7) \\ 123 \cdot 0(6) \\ 115 \cdot 2(7) \\ 124 \cdot 3(8) \\ 109 \cdot 4(7) \\ 126 \cdot 4(7) \\ 109 \cdot 4(7) \\ 104 \cdot 2(7) \\ 107 \cdot 4(8) \\ 103 \cdot 8(7) \\ 113 \cdot 2(5) \\ 113 \cdot 2(5) \\ 113 \cdot 2(5) \\ 105 \cdot 1(5) \\ 103 \cdot 2(6) \end{array}$ | $\begin{array}{c} C(10)-C(11)-C(12)\\ N(2)-C(12)-C(11)\\ C(13^3)-C(13)-O(2A)\\ C(13^3)-C(13)-O(2B)\\ C(13^3)-C(13)-O(3B)\\ C(13)-C(13)-O(3B)\\ C(15)-C(14)-O(4A)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(4B)\\ C(15)-C(14)-O(5A)\\ C(15)-C(14)-O(5A)\\ C(15)-C(14)-O(5B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(6B)\\ C(14)-C(15)-O(7A)\\ C(14)-C(15)-O(7B)\\ C(14)-C(15)-O(7C)\\ \end{array}$ | $\begin{array}{c} 106 \cdot 8(8) \\ 104 \cdot 5(6) \\ 118 \cdot 8(12) \\ 120 \cdot 1(12) \\ 115 \cdot 4(13) \\ 112 \cdot 6(12) \\ 154 \cdot 8(20) \\ 111 \cdot 3(15) \\ 118 \cdot 5(9) \\ 119 \cdot 7(12) \\ 93 \cdot 1(14) \\ 120 \cdot 0(10) \\ 121 \cdot 0(11) \\ 110 \cdot 9(13) \\ 112 \cdot 8(11) \\ 112 \cdot 1(10) \\ 125 \cdot 1(17) \\ 125 \cdot 1(17) \\ 112 \cdot 1(17) \\ 125 \cdot 1(17) \\ 110 \cdot \cdot 1$ |

Roman numeral superscript denotes the following equivalent position: I 1 - x,  $\bar{y}$ ,  $\bar{z}$ .

\* Bond distances involving hydrogen are in the range 0.81—1.30 Å.

#### TABLE 5

Torsion angles (°), with estimated standard deviations in parentheses

| C(1)-N(1)-C(5)-C(6)          | -175.5(7)        |
|------------------------------|------------------|
| C(1) - N(1) - C(5) - O(1)    | 3.7(11)          |
| C(1) - N(1) - C(8) - C(7)    | 174·8(8)         |
| C(2) - C(1) - N(1) - C(5)    | -132.5(7)        |
| C(2) - C(1) - N(1) - C(8)    | 53.9(10)         |
| C(3) - C(4) - N(2) - C(9)    | $67 \cdot 2(7)$  |
| C(3) - C(4) - N(2) - C(12)   | -172.6(6)        |
| C(4) - N(2) - C(9) - C(10)   | 160.3(6)         |
| C(4) - N(2) - C(12) - C(11)  | -160.8(7)        |
| N(1)-C(5)-C(6)-C(7)          | 1.4(10)          |
| N(1)-C(8)-C(7)-C(6)          | 0.1(32)          |
| C(5)-C(6)-C(7)-C(8)          | -0.9(11)         |
| C(5)-N(1)-C(8)-C(7)          | 0.9(10)          |
| C(6)-C(5)-N(1)-C(8)          | -1.5(9)          |
| C(7)-C(6)-C(5)-O(1)          | -177.7(8)        |
| C(8) - N(1) - C(5) - O(1)    | 177.7(8)         |
| N(2)-C(9)-C(10)-C(11)        | $-21 \cdot 1(9)$ |
| N(2)-C(12)-C(11)-C(10)       | $22 \cdot 4(10)$ |
| C(9) - C(10) - C(11) - C(12) | -0.7(11)         |
| C(9) - N(2) - C(12) - C(11)  | $-36 \cdot 2(8)$ |
| C(10) - C(9) - N(2) - C(12)  | 35.2(7)          |
| N(1) - C(1) - C(4) - N(4)    | 38.3(7)          |

atoms in Table 1, disordered oxygen atoms in Table 2, and hydrogen atoms in Table 3. Interatomic distances and angles  $^{11}$  are presented in Table 4, torsion angles in Table 5, and least squares planes  $^{12}$  in Table 6. Observed and

#### TABLE 6

Equations of least-squares planes relative to crystallographic axes. Deviations (Å) from the plane are given in square brackets, and estimated standard deviations in parentheses

Plane (1): N(1), O(1), C(5), C(6)

| -7.1824x + 1.4908y + 3.4972z = 0.5046             |      |
|---------------------------------------------------|------|
| [N(1) - 0.001(6), O(1) - 0.001(6), C(5) 0.004(7), | C(6) |
| -0.002(10), C(1) - 0.095(9), C(7) - 0.050(13),    | C(8) |
| -0.046(10)]                                       |      |

Plane (2): C(9)--(12)

 $-1 \cdot 8964x - 2 \cdot 5045y - 5 \cdot 8361z = -3 \cdot 1505$ 

 $[C(9) \ 0.002(8), \ C(10) \ -0.004(10), \ C(11) \ 0.006(12), \ C(12) \ -0.002(9), \ N(2) \ 0.541(5)]$ 

calculated structure factors are listed in Supplementary Publication No. SUP 21290 (4 pp., 1 microfiche).<sup>†</sup>

# DISCUSSION

A perspective view with atomic numbering is given for the protonated oxotremorine cation in Figure 1 and for the disordered oxalic acid and oxalate anion in Figure 2.



FIGURE 1 A perspective view of the protonated oxotremorine cation showing the atom numbering system used in the analysis



FIGURE 2 Atom numbering for the disordered oxalic acid molecule and oxalate anion

In the crystal, the oxalic acid is situated on the centre of symmetry at  $(\frac{1}{2}, 0, 0)$  whilst the oxalate anion is in a general

 $\dagger$  See Notice to Authors No. 7 in J.C.S. Perkin II, 1974, Index issue.

<sup>11</sup> W. R. Busing, K. O. Martin, and H. A. Levy, U.S. Atomic Energy Commission, Report ORNL TM 306, 1964.
 <sup>12</sup> W. C. Hamilton, Acta Cryst., 1961, 14, 185.

position. These findings are in agreement with previous work 13,14 where the oxalic acid molecule was shown to be planar and centrosymmetric in crystals of the  $\alpha$ -form, and the oxalate anion to be nonplanar in crystals of the hydrated ammonium salt. In the present investigation, however, little significance can be attached either to the conformation of the oxalate anion or to the bond lengths and angles in both the oxalic acid and oxalate moieties because of the considerable disorder in the oxygen positions. The unconstrained refinement of the oxygen site-occupation factors results in a non-unitary value for the sum of these factors over the partial sites for an individual atom. The difference between this sum and unity is  $<1.5 \sigma$  for all atoms except O(5) where the difference is  $3 \cdot 1 \sigma$ . However, this latter value may simply be a product of the assignment by least squares of a large temperature factor to O(5B).

The bond lengths and angles for the butyne and pyrrolidone groups are the same as for the oxotremorine analogue trimethyl-[4-(2-oxopyrrolidin-1-yl)but-2-ynyl]ammonium iodide <sup>15</sup> (II). Bond lengths and angles for



the pyrrolidine ring are close to those found in the structures of DL-proline,<sup>16</sup> L-hydroxyproline,<sup>17</sup> and hexapyrronium.<sup>18</sup> The butyne group is linear within experimental error, and the pyrrolidine ring adopts the envelope conformation with the carbon atoms planar and the nitrogen atom 0.54 Å out of plane (Table 6). The substituent at the nitrogen atom is in the pseudoequatorial position. The amide group of the pyrrolidone ring is planar (Table 6) as are those in (II), L-5-iodomethylpyrrolidin-2-one <sup>19</sup> and L-5-oxopyrrolidine-2carboxamide hydrate,<sup>19</sup> but oxotremorine differs from these three compounds in the spatial distribution of atoms C(7) and C(8) relative to the amide plane. In oxotremorine, atoms C(7) and C(8) are on the same side of the amide plane and deviate from it by -0.050 and -0.046 Å respectively (Table 6), but in the three comparable structures the equivalent atoms are on opposite sides of the amide plane and the respective deviations lie in the ranges 0.18-0.26 and -0.06 to -0.18 Å. The pyrrolidone ring in oxotremorine is therefore much closer to planarity than in the other structures.

The conformation of the protonated oxotremorine cation may be compared with that of the structurally and pharmacologically related molecule (II). The torsion angles of principal interest are C(3)-C(4)-N(2)-C(12), N(1)-C(1)-C(4)-N(2), and C(2)-C(1)-N(1)-C(5). The

<sup>13</sup> E. G. Cox, M. W. Dougill, and G. A. Jeffrey, J. Chem. Soc., 1952, 4854.

 <sup>14</sup> G. A. Jeffrey and G. S. Parry, J. Chem. Soc., 1952, 4864.
 <sup>15</sup> R. W. Baker and P. J. Pauling, J.C.S. Perkin II, 1973, 1247.
 <sup>16</sup> Y. Mitsui, M. Tsuboi, and Y. Iitaka, Acta Cryst., 1969, **B25**, 2182.

respective  $\tau$  values are for oxotremorine:  $-172 \cdot 6(6)$ ,  $38\cdot3(7)$ , and  $-132\cdot5(7)^{\circ}$ , and for (II)  $^{15}$  179, -143, and  $-99^{\circ}$ . The essential differences between the two conformations are therefore a rotation of  $181^{\circ}$  about C(1)-C(4), and a rotation of  $34^{\circ}$  about C(1)-N(1). The observed conformation of the protonated oxotremorine cation is in poor agreement with that calculated by Kier <sup>20</sup> who predicted that  $\tau[C(3)-C(4)-N(2)-C(12)]$  was ca.  $-125^{\circ}$ , that  $\tau[N(1)-C(1)-C(4)-N(2)]$  could not lie in the range 0—60°, and that  $\tau$ [C(2)–C(1)–N(1)–C(5)] must



FIGURE 3 The molecular packing viewed normal to (100). Dashed lines represent hydrogen bonds

lie in the range -60 to  $-120^{\circ}$ . The energy difference between the crystal conformation and Kier's minimum energy conformation for an isolated cation is ca. 25 kJ mol<sup>-1</sup>.

The molecular packing in (I) is shown in Figure 3. The protonated oxotremorine cation, oxalic acid, and oxalate anion are linked by a series of hydrogen bonds, denoted by dashed lines. Despite the disorder in the carboxy-groups, the hydrogen bonds may be identified, with only one ambiguity, from the relevant interatomic distances (Table 7). The ambiguity concerns the bonding to O(1) which is closer than the van der Waals distance

<sup>&</sup>lt;sup>17</sup> J. Dononhue and K. N. Trueblood, Acta Cryst., 1952, 5, 419. 18 R. W. Baker, N. Datta, and P. J. Pauling, J.C.S. Perkin II, 1973, 1963.

<sup>&</sup>lt;sup>19</sup> J. A. Molin-Case, E. Fleischer, and D. W. Urry, J. Amer. Chem. Soc., 1970, 92, 4728.

<sup>&</sup>lt;sup>20</sup> L. B. Kier, J. Pharm. Sci., 1970, 59, 112.

# TABLE 7

Selected intermolecular contact distances (Å). Distances may represent hydrogen bonds unless marked with an asterisk

| $\begin{array}{c} \mathbf{N}(2) \cdots \mathbf{O}(2) \\ \mathbf{N}(2) \cdots \mathbf{O}(2) \\ \mathbf{N}(2) \cdots \mathbf{O}(3) \end{array}$ | 2AII)<br>2BII)<br>3AIII) | 2·81<br>2·77<br>2·88 *   | $\begin{array}{c} \mathrm{O}(1) \cdots \mathrm{O}(5\mathrm{B^{IV}}) \\ \mathrm{O}(3\mathrm{A}) \cdots \mathrm{O}(7\mathrm{A}) \\ \mathrm{O}(3\mathrm{A}) \cdots \mathrm{O}(7\mathrm{B}) \\ \mathrm{O}(7\mathrm{B}) \end{array}$ | 3.12 * 2.51 2.56       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| $N(2) \cdot \cdot \cdot O(3)$<br>$O(1) \cdot \cdot \cdot O(4)$                                                                                | BIII)<br>BIII)<br>BIII)  | 2·88 *<br>2·75<br>2·50 * | $O(3A) \cdot \cdot \cdot O(7C)$<br>$O(3B) \cdot \cdot \cdot O(7A)$<br>$O(3B) \cdot \cdot \cdot O(7B)$                                                                                                                           | $2.46 \\ 2.50 \\ 2.44$ |
| $O(1) \cdots O(4)$<br>$O(1) \cdots O(4)$<br>$O(1) \cdots O(5)$                                                                                | LCIV)<br>SAIV)           | 3·39 *<br>2·58           | $O(3B) \cdots O(7C)$                                                                                                                                                                                                            | $2.44 \\ 2.53$         |

Roman numeral superscripts denote the following equivalent position: II  $\bar{x}$ ,  $\bar{y}$ ,  $\bar{z}$ ; III x - 1, y, z; IV x - 1, y - 1, z.

to both O(4A) and O(5A) of the oxalate anion. Because of the disorder, it is conceivable that there are hydrogen bonds to both partially occupied sites. That N(2) is hydrogen bonded to the oxalic acid through O(2A,B) and not O(3A,B) may be deduced from the N  $\cdots$  H–O angles which are 163 and 175° for the former pair, and 107 and 108° for the latter.

We thank the M.R.C. for financial support, Professor D. J. Jenden for the crystals, and Miss Patricia Brennan for assistance.

[4/1881 Received, 16th September, 1974]